0%

uart测试程序

UART(RS232) 串口协议

串口应用开发

1. 串口奇偶校验配置

  • 奇校验
    1
    2
    3
    newtio.c_cflag |= PARENB;
    newtio.c_cflag |= PARODD;
    newtio.c_iflag |= (INPCK | ISTRIP);
  • 偶校验
    1
    2
    3
    newtio.c_iflag |= (INPCK | ISTRIP);
    newtio.c_cflag |= PARENB;
    newtio.c_cflag &= ~PARODD;
  • 无校验
    1
    newtio.c_cflag &= ~PARENB;

2. 设置停止位宽

  • 1位停止位
    1
    newtio.c_cflag &=  ~CSTOPB;
  • 2位停止位
    1
    newtio.c_cflag |=  CSTOPB;

C语言实例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
int UART_Open(int fd,char* port)
{
fd = open(port, O_RDWR|O_NOCTTY|O_NDELAY|O_NONBLOCK);
if (-1 == fd){
clog_report((char *)"Can't Open Serial Port");
cerr_report(Openerr);
return -1;
}

if(fcntl(fd, F_SETFL, 0) < 0){
clog_report((char *)"fcntl failed!\n");
cerr_report(Fcntlerr);
return -1;
} else {
// printf("fcntl=%d\n",fcntl(fd, F_SETFL,0));
}

if(0 == isatty(STDIN_FILENO)){
clog_report((char *)"standard input is not a terminal device\n");
//cerr_report(Nstdindev);
//return -1;
}

return fd;
}

void UART_Close(int fd)
{
close(fd);
}

int UART_Set(int fd,int speed,int flow_ctrl,int databits,int stopbits,int parity)
{

int i;
int speed_arr[] = { B115200, B38400, B19200, B9600, B4800, B2400, B1200, B300,
B38400, B19200, B9600, B4800, B2400, B1200, B300
};
int name_arr[] = {
115200, 38400, 19200, 9600, 4800, 2400, 1200, 300, 38400,
19200, 9600, 4800, 2400, 1200, 300
};
struct termios options;
int arrlen = sizeof(speed_arr) / sizeof(int);

if(tcgetattr( fd,&options) != 0){
perror("SetupSerial 1");
return(-1);
}

for(i= 0;i < arrlen;i++) {
if (speed == name_arr[i]) {
cfsetispeed(&options, speed_arr[i]);
cfsetospeed(&options, speed_arr[i]);
}
}
options.c_cflag |= CLOCAL;
options.c_cflag |= CREAD;
switch(flow_ctrl){
case 0 :
options.c_cflag &= ~CRTSCTS;
break;
case 1 :
options.c_cflag |= CRTSCTS;
break;
case 2 :
options.c_cflag |= IXON | IXOFF | IXANY;
break;
}
options.c_cflag &= ~CSIZE;
switch (databits){
case 5 :
options.c_cflag |= CS5;
break;
case 6 :
options.c_cflag |= CS6;
break;
case 7 :
options.c_cflag |= CS7;
break;
case 8:
options.c_cflag |= CS8;
break;
default:
clog_report((char *)"Unsupported data size\n");
return (-1);
}
switch (parity) {
case 'n':
case 'N':
options.c_cflag &= ~PARENB;
options.c_iflag &= ~INPCK;
break;
case 'o':
case 'O':
options.c_cflag |= (PARODD | PARENB);
options.c_iflag |= INPCK;
break;
case 'e':
case 'E':
options.c_cflag |= PARENB;
options.c_cflag &= ~PARODD;
options.c_iflag |= INPCK;
break;
case 's':
case 'S':
options.c_cflag &= ~PARENB;
options.c_cflag &= ~CSTOPB;
break;
default:
clog_report((char *)"Unsupported parity");
return (-1);
}
switch (stopbits){
case 1:
options.c_cflag &= ~CSTOPB;
break;
case 2:
options.c_cflag |= CSTOPB;
break;
default:
clog_report((char *)"Unsupported stop bits");
return (-1);
}
options.c_oflag &= ~OPOST;
options.c_cc[VTIME] = 0;
options.c_cc[VMIN] = 0;

tcflush(fd,TCIFLUSH);

if (tcsetattr(fd,TCSANOW,&options) != 0)
{
perror("com set error!/n");
return -1;
}
return 1;
}


int UART_Init(int fd, int speed,int flow_ctrlint ,int databits,int stopbits,char parity)
{
if (-1 == UART_Set(fd,speed,flow_ctrlint,databits,stopbits,parity)) {
cerr_report(Initerr);
return -1;
} else {
return 1;
}
}

int UART_Recv(int fd, char *rcv_buf,int data_len)
{
int len = 0;
fd_set fs_read;

struct timeval time;

FD_ZERO(&fs_read);
FD_SET(fd,&fs_read);

time.tv_sec = 0;
time.tv_usec = 300000;

select(fd+1,&fs_read,NULL,NULL,&time);

if(FD_ISSET(fd, &fs_read)){
len = read(fd,rcv_buf,data_len);
return len;
} else {
cerr_report(Recverr);
return -1;
}
}

int UART_Send(int fd, char *send_buf,int data_len)
{
int ret;

ret = write(fd,send_buf,data_len);
if (data_len == ret ){
return ret;
} else {
tcflush(fd,TCOFLUSH);
cerr_report(Senderr);
return -1;
}
}

int uart3_loopback(void* arg, int *failcnt)
{
int fd_tx = -1;
int ret, i;
char snd_buf[512] = {0};
char rcv_buf[512] = {0};
char cmd[1024] = {0};
int data_len = 0;
struct uart_data data = *(struct uart_data *)arg;

for(i=0; i<99; i++)
{
switch(i%2) {
case 0:
snd_buf[i] = 'c';
break;
case 1:
snd_buf[i] = '5';
break;
}
}
snd_buf[i] = '\n';

fd_tx = UART_Open(fd_tx, data.uart_tx);
if(-1 == fd_tx){
sprintf(cmd, "open %s error", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
}

ret = UART_Init(fd_tx,data.baudrate,1,8,1,'N');
if (-1 == fd_tx){
sprintf(cmd, "Set %s Port Error", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
}
data_len = strlen(snd_buf);

memset(rcv_buf,0,sizeof(rcv_buf));
tcflush(fd_tx,TCIOFLUSH);

ret = UART_Send(fd_tx,snd_buf, data_len);
if(-1 == ret){
sprintf(cmd, "%s(rs422) send failed!", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
} else {
sprintf(cmd, "port:%s(rs422)[@%ld] send data: %s", data.uart_tx, data.baudrate, snd_buf);
clog_report(cmd);
}

usleep(600000);

ret = UART_Recv(fd_tx, rcv_buf, data_len);
if( ret > 0){
sprintf(cmd, "port:%s(rs422)[@%ld] receive data: %s", data.uart_tx, data.baudrate, rcv_buf);
clog_report(cmd);
}
tcflush(fd_tx,TCIOFLUSH);

ret = strncmp(snd_buf, rcv_buf, data_len);
if (ret == 0) {
sprintf(cmd, "Test[@%ld] %s(rs422) ok ...", data.baudrate, data.uart_tx);
clog_report(cmd);
} else {
sprintf(cmd, "Test[@%ld] %s(rs422) failed ...", data.baudrate, data.uart_tx);
clog_report(cmd);
(*failcnt)++;
}

UART_Close(fd_tx);

return 0;
}

int uart1_uart2_txrx(void* arg, int *failcnt)
{
int fd_tx = -1;
int fd_rx = -1;
int ret;
char snd_buf[512] = {0};
char rcv_buf[512] = {0};
char cmd[1024] = {0};
int data_len = 0;
unsigned long i;
struct uart_data data = *(struct uart_data *)arg;

for(i=0; i<99; i++)
{
switch(i%2) {
case 0:
snd_buf[i] = 'c';
break;
case 1:
snd_buf[i] = '5';
break;
}
}
snd_buf[i] = '\n';

fd_tx = UART_Open(fd_tx, data.uart_tx);
if(-1 == fd_tx){
sprintf(cmd, "open %s error", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
}
ret = UART_Init(fd_tx,data.baudrate,1,8,1,'N');
if (-1 == fd_tx){
sprintf(cmd, "Set %s Port Error", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
}

fd_rx = UART_Open(fd_rx,data.uart_rx);
if(-1 == fd_rx){
sprintf(cmd, "open %s error", data.uart_rx);
clog_report(cmd);
(*failcnt)++;
return -1;
}
ret = UART_Init(fd_rx,data.baudrate,1,8,1,'N');
if (-1 == fd_rx){
sprintf(cmd, "Set %s Port Error", data.uart_rx);
clog_report(cmd);
(*failcnt)++;
return -1;
}
data_len = strlen(snd_buf);

memset(rcv_buf,0,sizeof(rcv_buf));
tcflush(fd_tx,TCIOFLUSH);

ret = UART_Send(fd_tx, snd_buf, data_len);
if(-1 == ret){
sprintf(cmd, "%s write error!", data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
} else {
sprintf(cmd, "port:%s(rs232a)[@%ld] send data: %s", data.uart_tx, data.baudrate, snd_buf);
clog_report(cmd);
}
usleep(600000);

ret = UART_Recv(fd_rx, rcv_buf,data_len);
if( ret > 0){
sprintf(cmd, "port:%s(rs232b)[@%ld] receive data: %s", data.uart_rx, data.baudrate, rcv_buf);
clog_report(cmd);
}
tcflush(fd_rx,TCIOFLUSH);

ret = strncmp(snd_buf, rcv_buf, data_len);
if (ret == 0) {
sprintf(cmd, "Test(@%ld) %s(rs232a) ==> %s(rs232b) ok ...", data.baudrate, data.uart_tx, data.uart_rx);
clog_report(cmd);
} else {
sprintf(cmd, "Test(@%ld) %s(rs232a) ==> %s(rs232b) failed ...", data.baudrate, data.uart_tx, data.uart_rx);
clog_report(cmd);
(*failcnt)++;
return -1;
}

//loopback
memset(rcv_buf,0,sizeof(rcv_buf));
tcflush(fd_rx,TCIOFLUSH);

ret = UART_Send(fd_rx, snd_buf, data_len);
if(-1 == ret){
sprintf(cmd, "write back to [%s] error!\n", data.uart_rx);
clog_report(cmd);
(*failcnt)++;
return -1;
} else {
sprintf(cmd, "port:%s(rs232b)[@%ld] send data: %s\n", data.uart_rx, data.baudrate, snd_buf);
clog_report(cmd);
}

usleep(600000);

ret = UART_Recv(fd_tx, rcv_buf, data_len);
if(ret > 0){
sprintf(cmd, "port:%s(rs232a)[@%ld] receive data: %s\n", data.uart_tx, data.baudrate, rcv_buf);
clog_report(cmd);
}
tcflush(fd_tx,TCIOFLUSH);

ret = strncmp(snd_buf, rcv_buf, data_len);
if (ret == 0) {
sprintf(cmd, "Test(@%ld) %s(rs232b) ==> %s(rs232a) ok ...", data.baudrate, data.uart_rx, data.uart_tx);
clog_report(cmd);
} else {
sprintf(cmd, "Test(@%ld) %s(rs232b) ==> %s(rs232a) failed ...", data.baudrate, data.uart_rx, data.uart_tx);
clog_report(cmd);
(*failcnt)++;
return -1;
}

UART_Close(fd_tx);
UART_Close(fd_rx);

return 0;
}

int main(int argc, const char *argv[])
{
int ret;
struct uart_data *uart_data_test = NULL;
int baudrate[3] = {460800, 115200, 9600};
char result[20] = {0};
int i, failcnt = 0;
int cnt = atoi(argv[1]);
int times = 1;
char msg[100] = {0};
struct timeval start, end;
double maxtime=0,mintime=1000000,tms=0,full_time=0;

ret = clog_init((char *)"UART_001", 2);
if (ret != 0)
{
printf("test_uart log_init failed\n");
return 0;
}

uart_data_test = (struct uart_data *)malloc(sizeof(struct uart_data));
while(cnt) {
clog_report((char *)"-------------------------------------------------------------------");
sprintf(msg, "重复测试总轮数: %d 当前轮数: %d", atoi(argv[1]), times++);
clog_report(msg);
cnt--;

gettimeofday(&start, NULL);
for (i=0; i < 3; i++) {
//memset(uart_data_test->uart_tx, 0, 64);
//memset(uart_data_test->uart_rx, 0, 64);
//strcpy(uart_data_test->uart_tx, "/dev/ttyTHS0");
//strcpy(uart_data_test->uart_rx, "/dev/ttyTHS1");
//uart_data_test->baudrate = baudrate[i];

//ret = uart1_uart2_txrx((void*)uart_data_test, &failcnt);
//if (ret)
// goto finish;

memset(uart_data_test->uart_tx, 0, 64);
strcpy(uart_data_test->uart_tx, "/dev/ttyTHS4");
uart_data_test->baudrate = baudrate[i];

ret = uart3_loopback((void *)uart_data_test, &failcnt);
if (ret)
goto finish;
}
gettimeofday(&end, NULL);
tms = ((end.tv_sec - start.tv_sec) * 1000000 + (end.tv_usec - start.tv_usec)) / 1000;

sprintf(msg, "测试耗时: %lf ms", tms);
clog_report(msg);
maxtime=std::max(maxtime,tms);
mintime=std::min(mintime,tms);
full_time+=tms;
};

finish:
sprintf(msg, "最长测试用时: %lf 最短测试用时: %lf 总测试用时: %lf", maxtime, mintime, full_time);
clog_report(msg);
sprintf(msg, "重复测试总轮数: %d 成功轮数: %d 失败轮数: %d", atoi(argv[1]), atoi(argv[1]) - cnt - failcnt, failcnt);
clog_report(msg);
clog_report((char *)"-------------------------------------------------------------------");
free(uart_data_test);

if(failcnt)
sprintf(result, "failure");
else
sprintf(result, "pass");

clog_done(result);

return Success;
}

python实例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import subprocess
import os
import serial
import time


#打开串口
ser1 = serial.Serial('/dev/ttyS1', 9600, timeout=1)
ser2 = serial.Serial('/dev/ttyS2', 9600, timeout=1)

#发送数据
def send_data(ser, data):
ser.write(data.encode())

#接收数据
def receive_data(ser):
while True:
data = ser.readline().decode().strip()
if data:
return data

#统计中断数
#ttys1Result1 = subprocess.check_output("cat /proc/interrupts | grep ttyS1 | awk '{print $2}'", shell=True)
#ttys2Result1 = subprocess.check_output("cat /proc/interrupts | grep ttyS2 | awk '{print $2}'", shell=True)
#print(ttys1Result1.decode())
#print(ttys2Result1.decode())

#发送开始时间
start_time = time.time()
#9600
send_data(ser1, 'c5c5'*240)
rcvData = receive_data(ser2)
if rcvData == 'c5c5'*240:
print("测试通过")
else:
print("测试失败")

#发送结束时间
end_time = time.time()

#统计结束后的中断数
#ttys1Result2 = subprocess.check_output("cat /proc/interrupts | grep ttyS1 | awk '{print $2}'", shell=True)
#ttys2Result2 = subprocess.check_output("cat /proc/interrupts | grep ttyS2 | awk '{print $2}'", shell=True)
#print(ttys1Result2.decode())
#print(ttys2Result2.decode())
#result1=int(ttys1Result2) - int(ttys1Result1)
#print(result1)
#result2=int(ttys2Result2) - int(ttys2Result1)
#print(result2)
#print(f"发送数据到的时间: {end_time - start_time}秒")

#关闭串口
ser1.close()
ser2.close()